Photo ID System 1.0
Technical Overview
INTRODUCTION

The Avery® Photo ID System 1.0 represents the next generation of visitor-management software. Built from the ground up using the latest technologies, it is robust, scaleable and easy to use. The system has the following features:

• High-quality color badges capable of displaying a visitor photograph.
• Stand-alone, secure station, or attendant operation modes.
• Daily and weekly reporting in addition to custom search capability.
• Highly customizable badge creation, with the ability to import organization logos.
• Barcode scanning for fast visitor sign-in and sign-out.
• Pre-printed badge functionality for large groups or events.
• Emergency functionality that generates an e-mail to a designated recipients list of all current visitors (have signed in but have not signed out) from a centralized digital log and prepares the report for printing.
• A host of additional customization options.

In light of the increased needs emerging today for the identification and tracking of visitors, many organizations are searching for better visitor management tools for their front lobby reception areas, conferences, events, conventions, schools and other locations. While other solutions exist, none have the right combination of features and affordable price point that would lead to widespread adoption. With that in mind, the designers and developers of the Avery® Photo ID System concentrated on ease of use, speed, and accuracy. The close integration of off-the-shelf webcam technologies enables improved identification with an instant color visitor photo. At the same time, by using standard USB-based web cameras, inkjet printers, and the latest versions of the Windows® operating system, a complete Photo ID badging station costs little more than a standard desktop workstation.
Speed and ease of use are critical to the success and adoption of the Avery® Photo ID System. Mindful of both requirements, Avery Dennison designers and developers studied the process by which visitors register themselves at a variety of organizations around the country. Human Factors Engineers from leading industrial-design firms took these findings and systematically created an intuitive, professional and patent-pending user interface that is optimized for speed, ease of use and accuracy.

Sample Workflow
The easy and intuitive workflow of a first-time visitor is shown below.

1. Straightforward call to action invites the user to begin.

2. A returning visitor can enter their e-mail address to quickly call up their information and photograph.
3. The visitor is shown that this is the first step of a three-step process. They are prompted to take their picture by clicking “Start Countdown.”

4. At this point, the screen stops displaying the visitor's image and the visitor is prompted to look at the camera.
5. The visitor’s completed picture is displayed and they are prompted to either accept or retake their photo.

6. The visitor is asked to enter their personal information and other data designated by the administrator, such as “Host.”
7. The visitor's badge is printed automatically. Customizable instructions indicating how to return the badge are displayed. The process is complete.

This simple and well thought-out workflow has been tested extensively for ease-of-use. As a result, end users have found the system very intuitive and quick to use. Avery Dennison usability testing has shown that the time taken by a returning visitor using the system is comparable to that of traditional manual logbook systems.
The Avery® Photo ID System is designed to be scaleable and robust. Leveraging industry standard n-tier architecture, logical components of the system can be spread across multiple servers or run independently on a stand-alone system, ensuring maximum performance and flexibility. As a result, if system demand increases, additional stations can be added easily.

The Photo ID System client uses a combination of Macromedia® Director and Flash technologies to provide a fast, compelling desktop application that is feature-rich, highly usable, easily extensible and extremely stable.

Apache Tomcat, a Java-based application server, and MySQL® database, a widely deployed relational database, are among the server-side technologies used in this application.

Client-Side Technologies
Macromedia® technologies Flash MX and Director® MX power the client side of the Avery® Photo ID System. They were chosen for their advantages in creating rich user experiences, portability, and development speed. This combination provides a user experience better than any competing product, while providing a stable operational base.
Macromedia Flash® MX
Flash MX, used in over 500 million computers worldwide, is the user-interface base of the Avery® Photo ID System. Using vector-based technology, the player provides a fast, portable foundation for creating user-interface elements. Leveraging a component model ensures reliable, consistent user interfaces, with features users expect such as tabbing and cut-and-paste functionality.

Originally designed to be Web-deployed, the technology has inherent network support and was designed to run across a wide variety of systems and devices. The international nature of the Web dictated implementation of rich Unicode support that allows full localization. In addition, Flash MX is extended with an object-oriented programming language known as ActionScript¹ based on the ECMAScript specification and includes native support for XML. The client communicates with the server using a SOAP web services layer (Messaging and SOAP will be discussed in greater detail below). The combination of these features allows for a rich experience built on a solid foundation.

Macromedia® Director® MX
While Flash MX provides the user-interface technology, Director MX provides the glue that binds the user interface to the operating system. Designed to be secure and highly portable, Flash MX has limited access to the underlying operating system. With Director MX, the client has full access to the underlying OS and any operating-system functionality that could not be accessed using a Web-based application. For example, by using Director MX, the Avery® Photo ID System can completely lock out a visitor in stand-alone station mode. This prevents the visitor from terminating the application or launching other programs. This is a critical feature for unattended stations. Additionally, the application can suppress otherwise normal operating-system-level activities, such as the display of print dialog boxes. By removing this step, the sign-in process is faster and the user experience is much improved. Finally, application extensions such as device integration are straightforward, using Director MX’s inherent ability to support native code. Expect to see additional input devices in future versions of the Avery® Photo ID System.

¹ To learn more about Unicode, please visit:

² You can find more information about ActionScript at Macromedia’s Website:
http://www.macromedia.com/support/flash/action_scripts.html
Server-Side Technologies
The goal of providing a robust, scaleable solution for the Avery® Photo ID System is accomplished by using industry-standard technologies, including a Java-based application server and a field-proven, high capacity relational database. Both technologies benefit from at least a decade of development and are deployed across hundreds of thousands of operational, mission critical, servers.

Application Server Layer: Apache Tomcat
All server-side logic for the Avery® Photo ID System resides within the Apache Tomcat application server. Based on Java, Open Source Tomcat is the reference Servlet container for Sun Microsystems, author of Java. The choice of a Java-based engine provides the Photo ID System with a mature object-oriented language foundation with inherent support for standards such as XML and full Unicode compliance. Furthermore, the entire system is inherently portable beyond the original Windows® platform and has been successfully tested on the Linux platform.

A number of other Open Source libraries used in the Avery® Photo ID System include: Apache Xerces 2, a high-performance XML parser; Apache Axis, a Web Services engine used to handle messaging between the client and the server; Jakarta Log4j, a standard logging library for handling server logging; and JSTL, the Standard Tag Library for Java that provides rapid JSP development for use in the Photo ID System Reporting functionality. This combination of platform and libraries provides for more reliable code and ensures that standards are adhered to. The use of Apache Tomcat as a base enables the Photo ID System to be fast and reliable.

Database Layer: MySQL® Pro
MySQL Pro provides the data store for the Avery® Photo ID System. MySQL Pro is the most popular Open Source database available, deployed worldwide across dozens of platforms. Fully SQL-compliant, the database is accessed by the Photo ID System via JDBC; however, direct ODBC access is available as well. Known as a high-volume database, the only limitation on storing hundreds of thousands of badge records is disk space. MySQL Pro is a fast, field-proven database server that ensures visitor data will be easy to access and reliable.

Additionally, the Avery® Photo ID System ships with shell scripts that can be scheduled to run back-up, restore and data archiving processes. The scripts implement simple back-up methods that can be run while the system is in operation. The backups store database and photo data on the local file system, which allows the files to be fully backed up easily via whatever offline backup software is in use. Because the scripts are simple Windows® batch files, they can easily be extended to meet your organization’s needs.

Network Technologies
The system uses TCP/IP as the fundamental network substrate for connectivity. Nearly ubiquitous, TCP/IP is the common language of the Internet and widely supported by all major software and hardware vendors. By leveraging the TCP/IP network stack even in standalone use on a single system, complexity is significantly reduced, ultimately providing a much more reliable application.

3 Information about Apache Tomcat and libraries described here can be found at: http://jakarta.apache.org/
The primary messaging mechanism used to communicate over TCP/IP is the Web Services-based protocol SOAP, the Simple Object Access Protocol\(^4\).

SOAP

An XML-based protocol, SOAP provides Web Service access to the Avery\(^\circledast\) Photo ID System. The system communicates using defined messages and by implementing Web Services; its complete operation is exposed via a set of secure services.

The server implementation is via Apache Axis 1.0, an open-source implementation of the SOAP 1.1 protocol. The services consist of standard Java classes. Public methods represent the operations that the service can perform.

These services are configured in the Axis deployment descriptor, an XML-based file installed with the server components of the Photo ID System. This file maps a service name to a Java class. It also indicates which methods should be exposed to clients, as well as which "request handlers" are attached to the service.

\(^4\) For more information about SOAP, please see the W3C's abstract: http://www.w3.org/TR/SOAP?
All parts of the system, whether running in stand alone mode or with multiple stations over a network, require identification and authentication. Both end users and automated processes require identification and authentication before access to the Avery® Photo ID Server is provided.

User/Role-level Authentication
For an end user to access the Avery® Photo ID System, they must provide a pre-defined username and password. Stations set up to run in standalone Visitor mode must be properly logged in prior to switching modes. This provides accountability and helps to prevent badges from being created unless authorized by an administrator or attendant.

Users and roles are stored in separate tables within the database, with a joining table allowing the association of a given user with a given role. This provides broad flexibility in defining which functionality is accessible by which type of user. The Avery® Photo ID System allows for two user roles to be defined: attendant and administrator. The former can set the system in standalone Visitor mode, create badges, scan users in and out, and generate reports. The latter has complete access to the entire system and, in addition to the previously mentioned features, is capable of making global changes, like creating new badge designs, changing the organization's name and/or logo, and configuring default messaging. After a user logs in, the client reads the user’s role to determine which portions of the user interface should be available. For example, attendants are not given the option to go into the administrator-only screens. The system can support as many users as an organization needs, either as attendants or administrators.

Session Authentication
Authentication is managed using sessions. Once a user is logged in, their credentials are stored in a standard HTTP session. The client logs in to the server using a publicly available service: LoginService. All other services have an authorization class attached to them as an Axis “request handler.” This class prevents unauthorized access to these services. Each request to a protected service is routed through this access-control handler. The handler uses a special database role table to determine if the current user is acting in a role that has permission to execute the requested method on the requested Web Service. This provides another layer of security for the system.

SOAP Authentication
As most messaging between the clients and server are SOAP requests, all requests have an authentication mechanism.

A sample of the authentication header follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soapenv:Body>
    <ns1:login soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="urn:LoginService">admin</ns1:login>
  </soapenv:Body>
</soapenv:Envelope>
```
The username “admin” and the encrypted password immediately following are clearly shown. More details about how SOAP Authentication works are described below under “Session Authentication.”

The few non-application network events in the Photo ID System, such as image file display and exported reports, are also protected. This is done using the FileSecurityFilter class, which is a standard Java Servlet filter. This class ensures that the user is logged in, and in the correct role for retrieving the given file type.
Flexible deployment is a critical goal of the Avery® Photo ID System, but the process must remain easy. Avery Dennison recognizes that no two organizations are the same, and so the system is designed to allow a simple “standard” installation while remaining highly customizable, allowing various components to be installed as needed. Examples of some of the most common deployment methods follow.

Sample Station Hardware
At its simplest, the Avery® Photo ID System can be deployed on a standard PC with the following requirements:

Minimum Hardware Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel® Pentium® II 700Mhz</td>
</tr>
<tr>
<td>RAM</td>
<td>128 MB</td>
</tr>
<tr>
<td>HD</td>
<td>250 MB</td>
</tr>
<tr>
<td>OS</td>
<td>Windows® 2000, Windows XP® Home or Professional</td>
</tr>
<tr>
<td>Color Depth</td>
<td>24-bit</td>
</tr>
<tr>
<td>Video Resolution</td>
<td>1024x768</td>
</tr>
<tr>
<td>External Ports</td>
<td>3 USB 1.0 or greater</td>
</tr>
</tbody>
</table>

Stand Alone System
The stand alone deployment is the easiest option and is designed for single locations or sites that do not plan on networking their stations together. With this deployment, both client and server are installed on a single system, transparent to the user.

Web Camera
While the Avery® Photo ID System will work with most USB-based Web cameras, Webcams with at least 640x480 video-capture resolution, operating at 30 or more frames per second (fFPS), will provide the best user experience and highest-quality badge output.

Printers
For top printing speed, USB-based printers should be used. Printers with print speeds of 10 pages per minute (ppm) or greater, and resolutions of 600x600 dots per inch (DPI) are recommended for optimal image quality and print speed. Additionally, printers with higher levels of built-in memory can handle a greater number of simultaneous print jobs. For even faster speeds, consider computers and printers that support USB 2.0.

Barcode Scanners
While not required, the use of a barcode scanner reduces scan-out time significantly and will result in more accurate data than manual data entry. A USB-based barcode scanner capable of 44 scans per second (bidirectional) is recommended.
Multi-Station System
This deployment example is used in a larger company with multiple buildings or entrances. There must be at least one Attendant/Administrator or secure station where the server is installed. The process to setup such a deployment first involves installing a complete system, including client and server on a single PC. After launching the application for the first time, and entering an administrator name and password, additional client stations can be easily added to the system. Since this is the central data store for your visitor data, this PC should be secure, networked, and able to be backed up. Under this configuration, using this station as a server, all visitor log files are stored on this computer and should be backed up on a regular basis.

Installing additional stations that use the original PC as a server are simple custom installations, only requiring server name or IP address and the Photo ID System administrator name and password.

Multi-Station System
Data Center-based Multi-Station System

If the visitor data is mission-critical, consider following this deployment model for the Avery® Photo ID System. Like the previous example, several stations can still be installed as clients. The primary difference is separating the server from a station. The drawback of this approach is that a server is required. However, it is far more secure to allow the server to be deployed in a reliable data center away from regular end-user access.

To deploy using this model, the first step is the installation of only the server portion of the Photo ID System Software. After noting the DNS name or IP address of the server, any number of client stations can be installed. However, the first station to be launched will be prompted to create the administrator username and password that will be required for all subsequent client operations.
In order to ensure that the ID badges meet an organization’s requirements, the Avery® Photo ID System offers a variety of different badge styles. In addition, the Photo ID System provides extensive flexibility and customization capabilities, including the ability to customize the badge design, content, color, and option of importing an organization’s logo.
Avery Dennison’s product development efforts extended beyond software to the blank badges the IDs are printed on. The Avery® Photo ID System patented badges are designed to print on standard inkjet printers, thus producing high-quality, low-cost identification. These badges provide an attractive alternative to black-and-white thermal badges or high-cost dye-sublimation printed PCV cards.

For the Avery® Photo ID System, the following badge types are available:

2940: Avery® Self-Adhesive Photo ID Badge Labels
Business card size, inkjet, white, 2.25" x 3.5" label on 4" x 6" sheet, 100 badges per pack

2941: Avery® Self-Adhesive Photo ID Badge Labels
Business card size, inkjet, white, 2.25" x 3.5" label on 4" x 6" sheet, 500 badges per pack

2942: Avery® Photo ID Badge Inserts
Two-sided printing, business card size, inkjet, white, 2.25" x 3.5" two-sided badge on 4" x 6" sheet, 100 badges per pack

2943: Avery® Photo ID Badge Inserts
Two-sided printing, business card size, inkjet, white, 2.25" x 3.5" two-sided badge on 4" x 6" sheet, 500 badges per pack

2944: Avery® Photo ID Badge Inserts
Convention size, inkjet, white, 3" x 4" badge on 4" x 6" sheet, 100 badges per pack

2945: Avery® Photo ID Badge Inserts
Convention size, inkjet, white, 3" x 4" badge on 4" x 6" sheet, 500 badges per pack

2946: Avery® Laminated Photo ID Badges
Business card size, self-adhesive clip, inkjet, white, 2.25" x 3.5" laminated badge on 4" x 6" sheet, 25 badges and clips per pack

2920: Avery® Badge Holder Clip Style
Portrait style, business card size, clear, for 2.25" x 3.5" badge inserts, 50 per pack

2921: Avery® Badge Holder Clip Style
Landscape style, business card size, clear, for 2.25" x 3.5" badge inserts, 50 per pack

2922: Avery® Badge Holder Neck Hanging Style
Convention size, clear, for 3" x 4" badge inserts, 100 per pack

2923: Avery® Badge Holder Clip Style
Convention size, clear, for 3" x 4" badge inserts, 100 per pack
In order to facilitate adherence to an organization’s image, the Avery® Photo ID System ships with over 50 pre-designed templates. These templates are designed to cover a broad array of uses, including standard visitor, event, and long-term ID use cases. Each use case has numerous template types and offer a wide variety of customization options.

Template Customization
Badge template customization options include:

- **Organization Name and Logo** – Different template types can display the organization’s name in text and allow the company’s logo to be imported. The system supports JPEG and SWF file formats. Progressive and CMYK-format JPEGs are converted into standard JPEGs, but are still importable. The Flash SWF format is the ideal format for logo display, since it supports transparency and is a vector-based format. This provides for the cleanest reproduction and scaling of an organization’s logo. Additionally, all logos are scaled in a fixed-aspect ratio in order to prevent potential distortion with logos that do not share the same dimensions as the template.

- **Badge Fields** – All text fields on badges are auto-sizing. This ensures that text is never cut off, even with very long company names.

- **Fonts** – Each badge template can use one of four fonts: Franklin Gothic, Century, Scala, or Garamond.

- **Color Scheme** – Badges can also support a variety of different color schemes. Badges can be color-differentiated either by visitor type, such as a visitor or contractor, or by the day of the week, where color is either fixed or rotates on a weekly basis. For each visitor type or day, color can be specified either through a palate of 20 pre-defined colors, or through an exact hexadecimal color representation. For example, red is defined as 0xFF0000.

 5 For more information about hexadecimal color representations, see the W3C’s definition: http://www.w3.org/TR/2002/WD-css3-color-20020418/#numerical
The Avery® Photo ID System is an easy-to-install, easy-to-use and easy-to-maintain visitor management solution designed to provide more professional and effective visitor management for front lobby reception areas, conferences, events, conventions, schools and other locations. For more information about the Avery® Photo ID System, please visit www.photoID.avery.com or call 1-800-73-AVERY (1-800-732-8379).
Disclaimer: The materials, information, software and technology are provided “as is” and without warranties of any kind, either expressed or implied, including, but not limited to, any implied warranties of merchantability and fitness for a particular purpose. Avery Dennison does not warrant or make any representations regarding the use or the results of the use of the software, data and system in terms of their correctness, accuracy, reliability, or otherwise. Applicable law may not allow the exclusion of implied warranties, so the above exclusion may not apply to you.

Limits of Liability: Under no circumstances, including, but not limited to, negligence, shall Avery Dennison be liable for any special or consequential damages that result from the use of, or the inability to use, the software, data and system, even if Avery Dennison has been advised of the possibility of such damages. Applicable law may not allow the limitation or exclusion of liability or incidental or consequential damages, so the above limitation or exclusion may not apply to you. In no event shall Avery Dennison’s total liability to you for all damages, losses, and causes of action (whether in contract, tort or otherwise) exceed the amount paid by you, if any, for usage of the software, data and system.

Privacy Compliance: The Software can be used to create and manage a database that may contain privacy-sensitive data. Customer is solely responsible for the contents of such database and for compliance with all applicable privacy laws, rules, and regulations.

© 2003 Avery Dennison Corporation. All rights reserved. Avery and all other Avery brands, product names and codes are trademarks of Avery Dennison Corporation. All other brands and product names are trademarks of their respective owners.